Короткие волны: особенности распространения и выбор антенн.

Короткие волны — диапазон радиоволн с частотой от 3 МГц (длина волны ~ 100 м) до 30 МГц (длина волны ~ 10 м).

Короткие волны распространяются как земной волной, так и отраженной волной от ионосферы.

Основные физические свойства радиоволн

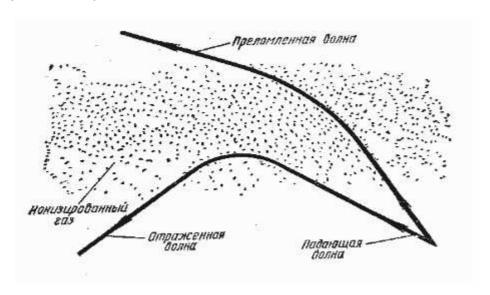
Деление радиоволн по способам распространения.

Надежность прохождения радиоволн на пути от передающей до приемной антенны определяет устойчивость работы радиолинии. Радиоволны, излучаемые передающей антенной, могут распространяться в атмосфере, в космосе, вдоль поверхности земли и в толще земли или воды. При этом различают следующие способы распространения радиоволн.

Прямая волна.

В однородной или слабо неоднородной среде радиоволны попадают в пункт приёма по прямолинейным или близким к ним траекториям. Такие волны называют **прямыми**. Радиосвязь прямой войной (или прямым лучом) осуществляется лишь при наличии прямой (или геометрической) видимости между антеннами корреспондентов, как, например, на радиолинии с самолетом. При расположении антенн корреспондентов вблизи земной поверхности дальность прямой видимости ограничена сферичностью и неровностями рельефа земной поверхности и составляет несколько десятков километров. При радиосвязи на более значительные расстояния радиоволны попадают в пункт приема вследствие рефракции, дифракции, отражения и рассеяния. Эти явления обусловлены влиянием поверхности земли, неоднородности тропосферы (нижний слой атмосферы толщиной до 15 км) и ионосферы (ионизированная область атмосферы на высотах 60 - 1000 км).

Земная волна.


Радиоволны, распространяющиеся вблизи земной поверхности и частично огибающие ее за счёт дифракции, называют **земными радиоволнами**. Чем больше длина волны, тем меньше потери в земле и дифракционное ослабление. Поэтому радиосвязь земной волной используют в диапазонах СДВ, ДВ и СВ, а также в диапазонах КВ и МВ для работы в движении и для связи на малых расстояниях (единицы и десятки километров).

В УКВ используется только земная волна. И дальность связи зависит от препятствий, встречающихся на пути волны, высоты антенн над землей и мощности передатчика, но даже при самых благоприятных обстоятельствах максимальная дальность может быть до 50 км (при условии высоты антенны не менее 70 м).


Отраженная волна.

Солнечная радиация вызывает ионизацию верхнего слоя атмосферы, называемого ионосферой. По своему составу она представляет собой сильно разреженный газ, в котором имеются свободные электроны, ионы и молекулы. При увеличении солнечной радиации число свободных электронов и ионов увеличивается, следовательно, растет и электрическая проводимость газа. При уменьшении радиации проводимость падает из-

за воссоединения свободных электронов и ионов в молекулы. Падающая на ионосферу радиоволна взаимодействует со свободными электронами, в результате чего может произойти ее преломление, частичное или полное отражение. Во всех случаях происходит также поглощение, потеря некоторой части энергии радиоволн. В зависимости от электропроводимости ионосферы и частоты радиоволны может преобладать тот или иной физический процесс, что и приводит либо к наличию, либо к отсутствию прохождения.

Когда короткие волны отражаются от ионосферы с малыми потерями, путём многократных отражений от ионосферы и поверхности Земли, они могут распространяться на большие расстояния.

Качество приёма отраженной волны зависит от различных процессов в ионосфере, связанных с уровнем солнечной активности, временем года и временем суток. Так днём лучше распространяются волны меньшей длины, так называемые низкочастотные диапазоны, а ночью — большей длины волны, высокочастотные диапазоны.

Влияние слоев ионосферы на распространение радиоволн в КВ-диапазоне:

- Слой F2 самый верхний из ионизированных слоев ионосферы. Концентрация этого слоя повышается днем, летом она выше, чем зимой. Максимальное распространение для связи одним скачком, т.е. отражение радиоволны от слоя F2 и возвращение к земле, до 4000 км. Чем выше концентрация слоя, тем более высокая частота может ещё отразиться от ионосферы. Максимальная частота, при которой происходит отражение, называется максимально передаваемой частотой МПЧ. С увеличением угла отражения МПЧ увеличивается.
- **Слой F1** существует только днем. Максимальное распространение для связи одним скачком до 3000 км. Ночью сливается со слоем F2.
- **Слой Е** отражающий слой, наименее подвержен солнечной активности. Максимальное распространение для связи одним скачком до 2000 км. МПЧ зависит только от угла отражения.
- Слой D самый нижний из ионизированных слоев ионосферы и единственный поглощающий слой для радиоволн КВ диапазона. Существует только днем. Ночью исчезает. При исчезновении слоя D ночью, становится возможен прием слабых и

далеко расположенных радиостанций. Из-за уменьшения МПЧ отражаемой слоем F2 и увеличением помех из-за пропадания слоя D, ночью, профессиональная радиосвязь в КВ диапазоне затруднена.

Прогноз МПЧ — расчет МПЧ производится по месячным, пятидневным и ежедневным прогнозам. В России эти прогнозы выдаются Институтом земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова Российской Академии наук (ИЗМИРАН).

Использование коротких волн.

Короткие волны используются для профессиональной радиосвязи в местностях, где нет возможности использовать другие виды связи (радиорелейная, сотовая, телефонная (проводная) – каждый вид связи имеет свои недостатки).

Радиорелейная связь (от англ. *Relay* — передавать, транслировать) — один из видов радиосвязи, образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций. Наземная радиорелейная связь осуществляется обычно на деци- и сантиметровых волнах (от сотен мегагерц, до десятков гигагерц). На протяжении всей линии связи требуется установка мачт ретрансляторов.

Сотовая связь - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид шестиугольных ячеек (сот). Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого. Вне зоны покрытия связи нет.

Телефонная (проводная) связь - позволяет организовывать (устанавливать соединение) и вести местные, внутризоновые, междугородние и международные телефонные переговоры и передавать факсы, а также устанавливать модемное соединение в режиме реального времени. При телефонном звонке, подключение между обоими собеседниками устанавливается через телефонную станцию исключительно с целью организации разговорного соединения (таким является и сигнал для факса и модемный сигнал). Голосовые сигналы передаются по определённым телефонным линиям, через выделенное подключение. Телефонные звонки требуют разветвлённой сети связи телефонных станций, связанных закрепленными телефонными линиями, подвода волоконно-оптических кабелей и спутников связи. Высокие затраты телефонных компаний приводят к весьма высокой стоимости междугородных переговоров. Выделенное подключение телефонной станции также имеет много избыточной производительности и/или времени простоя в течение речевого сеанса.

Обзор частот, по прохождению сигнала.

Диапазон 2 МГц (Средние волны).

Дальняя связь (свыше 1500-2000 км) возможна только при особом стечении обстоятельств и в течение ограниченного времени (0,5 – 1 час) преимущественно на рассвете-закате. А связи до 1500 км возможны с наступлением темноты. При рассвете диапазон замирает.

Диапазон 4 МГц (Короткие волны).

Является ярко выраженным ночным диапазоном. В дневное время связь на нем возможна только с ближайшими корреспондентами (поверхностной волной, 50-70 км). С наступлением темноты возможна связь с удаленными корреспондентами (до 1000 км). Через 1 – 1,5 часа, после восхода солнца дальня связь прекращается.

Диапазон 6 МГц (Короткие волны).

Этот диапазон имеет свои особенности. Летом связь возможна поверхностной волной только с ближайшими корреспондентами, 50 - 70 км. В дневное время связь возможна отраженной волной до 300 – 400 км, а зимой – до 500 – 700 км. В вечерние и ночные часы связь возможна на расстояние от 1500 - 2500 км.

Диапазон 8 МГц (Короткие волны).

Данный диапазон является "дневным". Связь происходит как поверхностной волной, так и отраженной от ионосферы. С восходом солнца связь возможна только с ближайшими корреспондентами (поверхностной волной, 50-70 км), и отраженной волной на расстояние 500 – 1000 км. К средине дня связь возможна на расстояние 1500 – 5000 км. С наступлением сумерек связь прекращается.

К числу преимуществ коротких волн необходимо отнести:

- 1) возможность передачи на большие расстояния сравнительно малыми мощностями;
- 2) невысокие мачты;
- 3) возможность направленной передачи данных и избирательного вызова корреспондента (при условии использования соответствующего оборудования);
- 4) небольшая полоса излучения радиостанций, что позволяет работать большому количеству радиостанций, на небольшом участке диапазона, и не мешать друг другу;
- 5) возможность применения быстродействующей передачи данных и передачи изображений.

<u>К числу недостатков коротких волн относятся:</u>

- 1) высокое требование стабилизации частоты, так как изменение частоты во время работы на несколько килогерц срывает прием;
- 2) неодинаковое прохождение волн в разное время суток и года, причем одна и та же волна, принимаемая с огромной слышимостью днем, может быть совершенно не слышна вечером, ночью и утром;
- 3) замирание периодическое изменение слышимости во время передачи, которое иногда бывает очень частым, иногда же незаметно и которое очень часто уменьшает слышимость в некоторые моменты до нуля;
- 4) мертвые зоны это между зонами приема поверхностных и пространственных волн может наблюдаться зона молчания. Для передатчика, антенна которого имеет равномерное излучение в горизонтальной плоскости. Зона молчания имеет вид кольцевой площади разделяющей зоны слышимости. Границы этого пояса определяются минимальной напряженностью поля, еще обеспечивающей прием на фоне помех. Причина существования зоны молчания достаточно проста, в эту зону земные волны уже не доходят, поглощаясь почвой, а отраженные волны в эту зону еще не доходят, так как отражаются только при падении под углом, и возвращаются на землю за зоной молчания. Внутренний радиус зоны молчания зависит от мощности извлечения поверхностных волн, и в редких случаях превышает сотню километров,

внешний же радиус **зоны молчания** при работе КВ станций на дальние расстояния, т.е. под малыми углами возвышения, может превышать тысячу километров. С пунктом, находящимся в зоне молчания для данной длины волны и для данной передающей антенны, нельзя добиться связи увеличение мощности передатчика.

Недостатки коротких волн удается ослабить только при тщательном учете и анализе всех компонентов, влияющих на распространение радиоволн, прежде всего, работой различными волнами в различное время года и суток и с применением различных антенно-фидерных устройств.

Сотрудники нашей компании имеют большой опыт в создании систем коротковолновой радиосвязи. Они всегда могут оказать помощь в расчете устойчивости радиосвязи на необходимых Вам радиотрассах, используя методики и современные системы расчетов и в выборе антенно-фидерного устройства (АФУ).

Чем короче волна, тем больше мертвая зона. Все эти основные данные и накопленный опыт дают возможность радиостанции связаться с корреспондентом, работая двумя или тремя, а то и четырьмя волнами в разное время.

Ниже приведенные графики – это результаты наработки нашими сотрудниками в разное время и на различных радиотрассах.

График связи на радиотрассе в 200 км.

(имея две частоты)

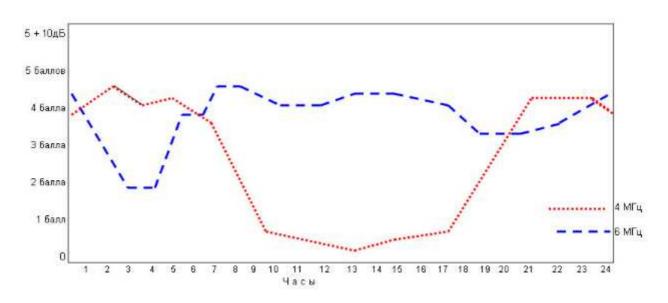
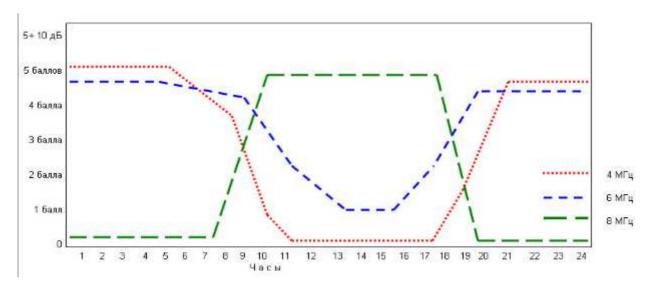



График связи на радиотрассе в 900 км.

(имея три частоты)

Для качественного анализа радиотрассы, которую предстоит рассчитать и дать рекомендации в подборе радиооборудования и АФУ (антенно-фидерных устройств) НЕОБХОДИМО:

- Примерную структуру системы радиосвязи (головная радиостанция, корреспонденты);
- Наличие (на какие диапазоны имеются разрешение Госсвязьнадзора) или на каких диапазонах планируете организовывать систему радиосвязи;
- Прислать географические координаты всех объектов, где должны быть установлены радиостанции;
- Описание местности и построек в районе установки радиостанции. Например: радиостанция будет располагаться в 2-х этажном деревянном здании, крыша коньковая, 2-х скатная, материал крыши оцинкованное железо. Рядом находятся 17-этажные здания, обязательно указать план застройки, с указанием этажности зданий;

Статья подготовлена специалистами фирмы Сайком.

Литература:

- К. Ротхаммель "Антенны".
- Г.Б. Белоцерковский "Основы радиотехники и антенны", гл. 13, 15.

COPYRIGHT 1998-2013 WWW.SiCOM.TU. Все права защищены Любое копирование возможно только с разрешения АДМИНИСТРАТОРА.